小说屋 - 网游小说 - 融合电脑,我能操纵亿万太空战舰在线阅读 - 第五十章 氚自持

第五十章 氚自持

        在陈岳全力以赴开始进行可控核聚变研究的第十年,这一次,经过重新优化调整之后的磁约束聚变路线终于交出了一份让陈岳感到有些振奋的答卷。

        这一次实验,以陈岳总计投入的能量记为100,产出的能量第一次达到了100.02。

        产出能量第一次超过了输入能量。用专业术语来说的话,便是q值终于超过了1。

        q值是指输出能量与输入能量的比值。

        这毫无疑问可以算是一次重大突破。

        与磁约束路线相比,惯性约束路线虽然同样经过了陈岳长达十年的迭代和研究,q值最高却才仅仅达到0.06。两者相差巨大。

        “惯性约束路线没什么前途啊。”

        陈岳思考着:“要不干脆放弃掉算了?唔……要不还是继续吧。反正算力闲着也是闲着。说不定后续惯性约束路线还能有点价值。”

        这种情况也是有可能出现的。就像当初用于描述曲面空间的黎曼几何,在刚诞生的时候,根本没人看好它,没人认为它有价值。

        一直到好多年之后,它才在众多极为前沿的物理理论研究之中展现出了不可替代的价值,成为了最为重要的数学工具之一。

        此刻陈岳对于惯性约束路线便是这种态度。

        留着吧,说不定以后能用上呢?未来科技会怎样发展,谁知道啊。

        “惯性约束路线的话,关键点在于激光发生器。目前,我最高只能将激光发生器的能量转化率提升到1%,100度电用来产生激光,99度电都浪费掉了,只有1度电能变成激光的能量。还有,激光发生器的可靠性太低了,轰击聚变燃料团才轰击个几百次就坏掉了,就得更换器件……太不实用了。”

        在陈岳看来,激光发生器的能量转换效率至少也得提升到50%的样子,且可靠性提升到平均使用一亿次才坏,才能算是有点前途。

        目前来看,这个目标很显然是不可能达到的。

        “一点一点提升吧。”

        陈岳苦中作乐的想着:“我刚想起来,激光炮就是这个原理啊,继续研究吧,就当是在研究激光炮了。”

        激光炮说到底也就是个大一点的激光发生器。

        于是陈岳仍旧维持着两条路线同时推进的情况。

        第二十年的时候,陈岳研究的锂合金材料出现了重大突破。

        锂合金材料在中子屏蔽及氚自持方面有重大意义。

        所谓氚自持,既是指核聚变反应堆需要自行产生氚以参与聚变,维持聚变。

        氘氚聚变之中,氘的储量极大,虽然没有氢多,但也比较容易获取。

        就像木星里,就含有约0.02%的氘,相比起木星的体量来,氘对于陈岳来说也算是无穷无尽了。

        氚则不一样。因为氚的半衰期很短,只有十几年,所以自然界之中几乎不存在这玩意儿。而这玩意儿制造又极其困难。就算以陈岳的工业能力,制造这玩意儿也需要投入极大的能源,甚至会将q值拉到1以下,直接导致可控核聚变失去意义。

        就算不计代价造出来了,也根本没法保存啊,还没保存几十年,氚就自己衰变掉了。

        恰巧,氚可以通过中子轰击锂元素生成。而,氘氚聚变所产生的能量之中,有高达70%以快中子的形式释放。

        那就正好对上了。我直接用锂合金来造磁约束核聚变装置的墙壁不就行了?这样一来,氘氚元素聚变释放大量高能快中子,快中子轰击锂合金墙壁生成氚,氚又返回去参与氘氚聚变继续生成中子,中子继续轰击锂合金墙壁……

        如此循环。

        理论如此,工程实现极难。

        首先,锂合金墙壁必须要具备极高的耐热性,同时还要有传导性,要可以将这些热量传导出来拿去发电,同时还要控制氚的滞留率,防止太多的氚赖在墙壁里不走,不去再次参与氘氚聚变,那核聚变就没法持续下去,就只能熄火了……

        此刻,陈岳的材料实验基地终于制造出了合适的锂合金。在添加了某种微量元素之后,又通过特殊的制造方法,他制造出来的锂合金完全满足了聚变反应堆的要求。

        这是一项突破。

        第二项突破,是有关常温超导材料。

        以往时候的超导材料只能在极低温度下运行。这一次,通过长达几十年时间的研究,陈岳终于找到了一种特殊的材料。

        它以氢气为主,添加有氖气、氧气等一些气体,在高达600万倍地球大气压的压力之下制造出来的一种具备金属性质的固态物质。

        这种物质,具备在不高于63摄氏度之下的超导能力,完全满足了陈岳的要求。

        又过十年,陈岳完成了这两种材料的小规模试制。同时,磁约束路线实验室那里,核聚变装置的q值第一次达到了2.6,点火时间达到了3个小时。

        替换上这两种材料之后,聚变反应堆的性能立刻暴涨,q值直接暴增到了7.5,点火时间高达一个月。

        点火时间高达一个月便是指中子轰击锂生成氚,氚参与聚变又生成中子,中子又轰击锂生成氚这一流程,足足持续了一个月,才因为氚生成不足而停火。

        这虽然还未达到工业化和商业化应用的要求,但已经算是极为巨大的进步了。

        陈岳再接再励,继续投入大量的算力与资源,继续孜孜不倦的研究。

        第五十年的时候,基础物理研究方面,等离子体物理研究出现重大突破。陈岳全面改进了核聚变反应堆的等离子稳态控制装置,极大提高了稳定性,由此,q值再度增加到了10.6,点火时间达到了半年。

        从这个时间开始,陈岳开始尝试着进行核聚变发电站的建造。第六十年的时候,第一座具备实用价值的核聚变发电站建成,开始并网发电。同时,聚变反应堆小型化研究启动。

        这座发电站是实验性质的,它将会长期运行下去。而它运行期间产生的数据,将会成为陈岳进一步优化改进核聚变发电的基础。

        由此,提高q值、提升点火时间长度、提升整体装机容量、聚变反应堆小型化,总计四个研究方向,陈岳一同发力,同时开始了研究。